DETECTION OF COMMON BETA THALASSEMIA MUTATIONS AMONG EGYPTIAN PATIENTS

Osama Shaalan1, Ahmed Daif1*, Khalil Elhalfawy2

1Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Egypt
2Molecular Biology Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Egypt

* To whom correspondence should be addressed: Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Egypt.

ABSTRACT
Beta-thalassemia is one of the most common autosomal recessive disorders worldwide. High prevalence is present in populations in the Mediterranean, Middle-East, Transcaucasia, Central Asia, Indian subcontinent, and Far East. It is also relatively common in populations of African descent. The highest incidences are reported in Cyprus, Sardinia, and South East Asia. In Egypt, although more than 20 different mutations have been detected so far to cause the disease, the information available concerning the underlying molecular defects in beta-thalassemia has not yet been completed. The current study aims to detect the most common beta-globin gene mutations in Egypt among beta-thalassemia patients by using PCR based reverse hybridization method (StripAssay) for the most prevalent 22 beta-globin gene mutations in the Mediterranean population in an attempt to estimate the incidence of each mutation, and an attempt to improve our control strategy of beta-thalassemia. This study included a total of 37 confirmed beta-thalassemia ethnic Egyptian patients (23 males and 14 females) out of them 17 patients were beta-thalassemia major and 20 were beta-thalassemia intermediate. Evaluation of beta-thalassemia mutations revealed that, the presence of 9 different beta-globin mutations. The most frequent mutation were IVS 1-110[34%], IVS 1-6(23.5%), IVS 1-1(19%), Codon 27[6.5%], IVS 2-848[6.5%], IVS 2-745[2.1%] and IVS 2.1 [2.5%], Codon 39[4%]), and IVS 1.5 [1.5%]. IVS 1-110(G>A) is the commonest homozygous mutation while, IVS 1-6[T>C] is the commonest heterozygous mutation. Three mutations (IVS 1-110(G>A), IVS 1-6[T>C], IVS 1-1[G>A]) were account for about 76% of mutations in our studied alleles. In conclusion, knowledge of these mutations can provide an insight into the prognosis for individual patients, especially in young ages or before birth to take proper measures in advance and eventually ameliorate the symptoms in the long run.

Keywords: beta-Thalassemia, mutations, beta-Globin Strip Assay (reverse dot-blot PCR), PCR. Article type: Research Article

INTRODUCTION
Thalassemia is a globin gene disorder that results in a diminished rate of synthesis of one or more of the globin chains and, consequently, a reduced rate of synthesis of the hemoglobin. Beta-thalassemia syndromes are a group of hereditary blood disorders characterized by reduced or absent beta globin chain synthesis (1). Beta-thalassemia is caused by the reduced (beta+) or absent (beta0) synthesis of the beta globin chains of the hemoglobin (Hb) tetramer, which is made up of two alpha globin and two beta globin chains (alpha2beta2). Beta-thalassemia homozygotes may develop either thalassemia major or thalassemia intermedia. (2). The reduced amount (beta+) or absence (beta0) of beta globin chains result in a relative excess of unbound alpha globin chains that precipitate in erythroid...
precursors in the bone marrow, leading to their premature death and hence to ineffective erythropoiesis. The degree of globin chain reduction is determined by the nature of the mutation at the beta globin gene located on chromosome (3). High prevalence is present in developing countries whereas the health problem is prominent and shortage of the healthcare delivery strategy. The highest incidences are reported in populations of African descent, Mediterranean, Middle-East, Transcaucasia, Central Asia, Indian and Cyprus (4). Therefore, a thalassemia prevention program in these countries is highly needed (5). The position of Egypt in the center of the Middle East and as in many Mediterranean countries, beta-thalassemia in Egypt considered as a major public health problem (6). Due to the limited resources of Egypt, its healthcare system is unable to deal properly with such a large number of sick babies. Therefore, community based prevention system must be that includes identification of carrier patients, genetic counseling and prenatal diagnosis (7-9). More than 200 mutations are detected to cause beta-thalassemia, the information available concerning the underlying molecular defects in beta-thalassemia has not yet been completed (10). Beta-thalassemia mutations varies significantly among different geographical areas, there for The success of carrier screening and prenatal diagnosis depends on the information of prevalent mutations of such area (11-15).

SUBJECTS AND METHODS

Subjects
The study participants were among a group of attendants to the hematology clinic of Abulrish hospital, Cairo University, Egypt. They comprised males and females suffering from beta-thalassemia disease. Diagnosis of beta-thalassemia disease was based on history, clinical examination and hematological investigations. All investigations were done in accordance with the Cairo University, health and human Ethical Clearance Committee guidelines for clinical researches. After obtaining informed consent, all participants were questioned in regard to their personal and family medical histories.

Methods
All affected patients were clinically classified into thalassemia major and thalassemia intermediate by collecting their peripheral venous blood for complete hematological examination with consideration to; the age of disease onset, the age of first transfusion, frequency of blood transfusion, hepatosplenomegaly, facial and growth affection.

beta-Globin stripassay

Reverse dot-blot PCR was done using beta-Globin StripAssay MED™, (ViennaLab Diagnostics GmbH, Gaudenzdorfer Gurtel, Vienna, Austria). First, DNA was extracted from peripheral blood leukocytes obtained from EDTA anti coagulated blood samples according to standard protocols and commercial kits. The isolated DNA was subjected to multiplex PCR amplification reaction using biotinylated primers. The resulted amplified beta-globin products are then selectively hybridized to a test strip containing wild type and mutant oligonucleotide probes immobilized as parallel lines. The color of the Bound biotinylated sequences is then developed. The assay covers 22 mutations, characteristics for the Mediterranean area.

Statistical analysis
Statistical Package for Social Sciences (SPSS) computer program (version 19 windows) was used for data analysis as follows: quantitative variables Results are expressed as mean ± standard deviation (SD) or number (%). While the qualitative variables as number and percentage. P value ≤ 0.05 was considered significant and < 0.001 was considered highly significant.
RESULTS AND DISCUSSION
This study included a total of 37 ethnic Egyptian patients (23 males and 14 females) who were confirmed to have β-thalassemia. Out of the β-thalassemia, 17 patients were a thalassemia major and 20 were a thalassemia intermediate. Clinical data from the studied subjects are shown in Table 1.

Hematological data of study subjects revealed that, there were significantly lower hemoglobin (Hb), and significantly higher reticulocytes, platelets and white blood cells (WBCs) in patients with thalassemia major compared with patients with thalassemia intermedia. Moreover there were no significant differences between patients with thalassemia major and thalassemia intermedia as regard mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) as shown in Table 2.

Evaluation of β-thalassemia mutations in 37 patients with 74 alleles revealed the presence of 9 different β-globin mutations. The most frequent mutation is IVS 1-110[G>A] which account for about 34% of the studied alleles followed by IVS 1-6(T>C) which represent about 23.5%. While IVS 1-1(G-A) account for 19%. Other less frequent mutations as Codon 27[G>T] and IVS 2-848[C>G] presented by 6.5% for each mutation, IVS 2-745[C>G] and IVS 2.1 [G>A] presented by 2.5% for each mutation, Codon 39[C>T]) account for 4% and IVS 1.5 [G>C] represented by 1.5% as shown in Fig. 1.

Fig 1.β-Globin gene mutations. Diagram describes the distribution and frequency of β-thalassemia mutations among carrier patients.

Three mutations (IVS 1-110[G>A], IVS 1-6[T>C], IVS 1-1[G-A]) were account for about 76% of mutations in our studied alleles. The other 6 less common mutations (IVS 2-848[C>G], Codon 27[G>T], IVS 2-745[C>G], IVS 2.1 [G>A], Codon 39[C>T]), IVS 1.5 [G>C]) represented about 24%. IVS 1-110[G>A] represents the most common homozygous mutations 6 out of 14 homozygous cases about 43%. In compound heterozygous cases, IVS 1-110[G>A] also is the most common heterozygous mutation account for 13 out of 23 of our heterozygous cases representing about 56%. Next IVS1-6 [T>C] represents the second common homozygous mutations 3 out of 14 homozygous cases about 21%. In compound heterozygous cases, IVS 1-6[T>C] is the second common compound heterozygous mutation present in 11 out of 23 of our heterozygous cases account for 47%.Followed by IVS 1-1[G>A] which represents the second common homozygous
mutations 3 out of 14 homozygous cases about 21%. In compound heterozygous cases, IVS 1-1[G>A] occupy the third place in compound heterozygous mutations account for 8 out of 23 of compound heterozygous cases representing about 34% Fig. 2.

Fig 2.β-Globin gene mutations Representative of the test strip used in the study (homozygous IVS 1-110[G>A] and IVS 1-110[G>A]/IVS 1-1[G>A] compound heterozygous)

Beta Thalassemia is a group of hemoglobin diseases caused by a reduction (b+) or abolish (b0) in the synthesis of β-globin chains. Carrier individuals can be either compound heterozygous, or homozygous for β-thalassemia [16].

β-Thalassemia is the most common genetically inherited β-globin disorder in Egypt (17). Combined effects of high carrier rates and high frequency of consanguineous marriages make prevalence of β-thalassemia particularly high in Egypt (18). Up to date in Egypt, carrier detection and genetic counseling and carrier identification is essentially presented to families with an affected individual. In these families, the phenotypic and genotypic evaluation is usually performed in these families to determine the prognosis and to offer the comprehensive genetic counseling. For further reduce the incidence of new births of children with β-thalassemia (19).

In our studied, the commonest symptoms in the subjected patients were Pallor and jaundice while the most common signs were hepatomegaly and splenomegaly. This is in accordance with (20, 21).

In 37 patients with 74 alleles revealed the presence of 9 different β-globin mutations. The most frequent mutation is

Despite efforts to develop a therapy or bone marrow transplantation for β-thalassemia, still the prenatal diagnosis followed by termination of the affected fetus remains the best form of prevention. Until now, more than 200 different mutations have been described in patients with β-thalassemia. So the aim of this study is to find rapid, sensitive accurate method to detect the affected individuals, carrying the β-globin gene mutations and applicability of this method to use in prenatal diagnosis and further prevention of the disease.
IVS 1-110[G>A] which account for about 34% of the studded alleles followed by IVS 1-6[T>C] which represent about 23.5%. These results are in agreement with El Fadaly et al, 2015, Elmezayen et al, 2015 and El-Beshlawy et al, 2012, (18, 23-24).

IVS 1-110[G>A] is the commonest homozygous mutation found in 6 out of 14 homozygous cases accounting for about 43% of homozygous mutations. IVS 1-110[G>A]/ IVS 1-6[T>C] is the commonest heterozygous mutation found in 6 out of 23 heterozygous cases accounting for about 26% of heterozygous mutations. Our results are in agreement with the results of El-Beshlawy et al, 2012, and Jifri et al, 2010 (24-25). On the other hand El-Gawhary et al., 2007 and Elmezayen et al., 2015 (26, 23) reported that IVS1-6 is more frequent than IVS1-110.

CONCLUSION

Knowledge of β-thalassemia mutations and their incidence may be a step in the heterogeneity detection of thalassemic carrier patients; consequently, prenatal diagnosis in families at-risk can reduce the incidence and the severity of the disease and thus can provide an insight into the prevention strategy for this disease.

Declaration of Interest:
The authors report no conflicts of interest.

REFERENCES

